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Introduction

The first section gives tlie measure of uncertainty given by
Shannon (1948) and the generalizations thereof by Schiitzenberger
(1954), Kullback (1959), Renyi (1951, 1965), Kapur (1967, 1968), and
Rathie (1970). It gives some postulates characterizing Shannon's
entropy, Renyi's entropy of order a and our entropy of order a and
type p. It also gives some properties of this most general type of
entropy.

In the second section an optimization problem is formulated
and solved in the case of Shannon's and Renyi's entropies by the use
of the principle of optimality. It is shown that this principle fails to
soIve the problem in the case of entropy of order a and type p and
this leads to an interesting problem in non-linear integer fractional
functional programming.

In the third section, we discuss the connection between the
concepts of entropy in information theory and physics and show how
Shannon's entropy leads to Boltzman distribution of statistical
mechanics but fails to give the Fermi-Dirac and Bose-Einstein dis
tributions of quantum mechanics. We find the entropies which lead
to these distributions, but these do not satisfy an important property
satisfied by Shannon's entropy. This may give us some insight into
quantum mechanical systems.

In the fourth and last section, we obtain some properties of
Bose-Einstein and Fermi-Dirac entropies obtained in the third
section.

§ Contributed for (he Silver Jubilee Session of the Indian Society of
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2. Measures of Uncertainty

It is important to be able to measure the amount of informa
tion obtained from any scientific experiment or investigation. This
can be measured by the amount of uncertainty removed by the ex
periment or investigation. The greaterthe uncertainty removed, the
greater is the information communicated.

Thus let Ai, Ag,...,A„ be n possible outcomes of an experiment
A and let pi, p2,...,p„ be the respective probabilities of these
outcomes before the experiment is performed. After the experiment
is performed, one of these outcomes has happened and so the uncer
tainty as to the outcome has been removed. We give belovi' some
postulates which we expectany measure of uncertainty to satisfy.

(0 It should be a function of;?i,We denote it by
Pn) or by p„) if we want to indicate

specifically the number of possible outcomes of the
experiment.

(ii) If there are small changes in p"s, there should result a small
change in the measure of uncertainty, so that H(pi, Pi,...,Pn)
should be a continuous function ofP2,:-,Pn.

(iii) If>i=l and the other probabilities are all zero, there is no
uncertainty about the outcome. As such H(pi, p2,,....p„)
should vanish whenever one of the probabilities is unity and
the others are zero.

(iv) From {Hi), the minimum uncertainty is zero. The maximum
uncertainty arises when all the outcomes are equally likely,
i.e., when

1Pl=Pi=-=Pn=~ (1)

(v) If we add an impossible outcome to the n outcomes, the
uncertainty does not change, so that

H{.px, Pi,..., p„, 0) = H(p^, P2, Pn). (2)

(vj) If we simply interchange the names of the outcomes, the
uncertainty does not change so that H(pi, ps,-.., Pn) is a
symmetric function of the arguments.

(yii) The information given by two independent experiments is
the sum of informations given by the two separately so that
if A and B are independent experiments, then

H{AB) = HiA) + H(B) (3)
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where

Ais ( ••• '̂')and Bis (4)
V P1P2 -PnJ \q1q2 -qm)

Pi>^, qi>0 0=1, 2,..., n;j = 1, (5)

and

n m

= (6)
/=1 y=l

(v?7/) It the experiments are not independent, we expect intuitively
that

H{AB) < H{A) + H{_B) (7)

Let Hjt{B) be the amount of information given by experiment
B when it is known that the experiment A has resulted in the /cth
outcome. We then postulate

n

H{AB) = H<,A) + Jp/. H,{B). (8)
fc=l

It may be noted that here we have used a purely mathematical
construct viz the conceptof mathematical expectation.

We ask, at this stage, the question whether there exists a func
tion satisfying all the eight postulates and whether it is unique. The
answer to the first part is in the affirmative [Khinchin (1957)] and the
function which satisfies all the postulates is

n

H(Pi, P2,...,Pn) = ~ X2]Alog P/ (9)
1= 1

where X is arbitrary and this arbitrariness is dueto the fact that none
of our postulates specify a scale. If we add the postulate

(ix) HiU)=h (10)

we get a unique function viz

n

^iPlf Piy-tPn) = ^ Alogj Pj. ^11)
! = 1

This is Shannon's entropy given in 1948.
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We can prove a large number of properties for Shannon's
entropy and we can replace the above postulate system by other
postulate systems. Some of these postulate systems have been dis
cussed in Reza (1961), Khinchin (1957), Feinstein (1958), Terberg
(1958), Kullback (1959), Renyi (1961), Aczel (1968, 1970), Daroczy
(1969), Kendell (1964), Lee (1964), and Aczel Daroczy (1971).

We may note that out of the above postulates, (vi/i) is on a
different footing from others in the sense that it is less intuitive than
others and is based on a mathematical construct. We can replace it
by another postulate of the same nature, e.g. Renyi (1961) replaces
it by

{vm) glHn+m KAUB)\ — H'(P) + w(0 ^ ^

where g- is a monotone increasing function,

AUB is
A1A2 ... Aft ^1^2 •••

PlPi Pn ••• Qn
(13)

and

w{P) = Pi + Pi + -\rPn (14)

HQ) = ?] + ?2 + •••

are the weights of the two schemes.

Renyi (1961) considered the case of generalized probability
distributions for which

w{P) < 1, w{Q) ^ 1 (16)

and he postulated (12) to hold when

M'(P) + w{Q) ^ 1. (17)

For these generalized probability distributions, he obtained the
entropy of order a

J' =S Pi

{P) = log, (« ^ 1). (18)
%Pi

Z= 1
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We (1967) replaced the above postulate {viii') by

51

Wp iP) + Wp (6)

where

Wp (P)=Pl^ +Pi^ + ...+Pn^ -(20)

wAQ)=9i^ +9,^ +'"+^'n^ -(21)

to get the entropy of order a and type p

I
h\p)=^ log,

/=1

This will make the corresponding version of (17) applicable for
a wider class of incomplete probability distributions.

We can get a still more general measure of uncertainty by
using

w, (P) = f(p^) + f(p,) + ... + f(Pn)

W/(e)=/(?l) +f(qd+-

to get the measure

(23)

(24)

2 Pi''-^ APi)
...(25) ,

s m
i=\

This is the most general measure of uncertainty obtained so far.

If/(^,)=. p^?' , we get entropy of order a and type p.

If/(p,)= p^^ , a-> 1, we get the measure of uncertainty

S Pi^ loga Pi

h,\f)= U h'(P)= » B
S Pi^
i=l

,..(26)
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If f{pi) = Pi, we get Renyi's entropy of order k.

IffiPi) = 1, S = 1, we get Shannon's entropy.
i=l

If a-» cc, we get

^ 00 {P} ~ logjmax- (27)

which is in a sense, the simplest measure of uncertainty. It satisfies
the first seven postulates and to use it we need not know all the
probabilities; we have to know precisely only the maximum proba
bility of any outcome. In many cases, it may be easier and less costly
to determine this than to determine all the probabilities.

Rathie (1970) had generalized (22) to give

P2."- 1 ,
3 1

/=!

...(28)

but this measure violates the symmetry postulate (vi) which has a
strong intuitive basis.

Before proceeding further, we state some properties of entropy
of order a and type p, some of which will be found useful later.

(0 H'f. ^ipi,P2,,-.,Pn) is independent of both a and p and for
generalized probability distributions with given weight k, it is a
monotonic increasing function of n.

07) (P)= 0=> S (/,,«-! -1) = 0
a /=1

...(29)

m

(fv)

so that this entropy vanishes when exactly one probability is
unity and the rest are all zero.

(P) is a monotonic decreasing function of a, for a fixed p.

p.) (30)
(J>„ P,.... P.) <: nl , A±|±e.,

!^^±f± '̂.p„....p,) ...(30



MATHEMATICAL PROGRAMMING AND PHYSICS 53

and, in general, this measure increases with the coming closer of pro
babilities. This is also expected on intuitive grounds. Thus

(v) fPj^ El. Pl^.P2_ .
a V'«1 ' nil ' mz ' mz nii''"'

Pi
mn

so that this entropy is always increased by a subdivision of the
outcomes.

This last property leads to the optimization problem discussed
below.

The entire theory of information isbased on Shannon's entropy
and Chabbra (1969) has made an investigation as to how far the
results of this theory remain valid for entropy of order a and for
entropy of order a and type p.

3. The Optimization Problem

Suppose an experiment

Mj, Az,..-,

\Pl! Pif-> Pn)

is performed and H(pj, p3,...,p„) is any one of the entropies obtained
above, for this experiment.

Now suppose more funds become available so that each of the
possible outcomes can be investigated in greater detail. The more
detailed experiment is indicated by

A-ii, ..., Aimt A^i, •••» Azm2 A„i, Ani, •••, Antnn \ (33^
KPuj Piit •••> Piml PiU PiZr •••> Pim2 Pnl! Pni> •••> Pnmn J

where

ttii

Pij=Pi (J=l, 2, ..., «). ...(34)

7=1

We have. seen above that this will increase the information
obtained. The problem is to maximize the gain in information viz

JI{A)-H{A)
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or

Plm-^ \ Pil> • , Pim^ ; •••jPnl,"-, Pnm„)~Jf(pi, P-2,-. •,Pn)

...(35)

subject to

4-/2(w2)+• ••+Umn)<B ... (36)

where fiinu) is the cost of carrying out nn experiments of the rth
category, B is the budget available and m's are integers ^1.

Since m's are required to be integers, Lagrange's method of
undetermined multipliers is not available, However fortunately the
technique of dynamic programming is applicable in the case of
Shannon's and Renyi's entropies. We may note that here decision
or control variables are my_, 7?2„.

We may make an initial simplification by noting that the
entropy is increased by making probabilities as nearly equal as pos
sible so that we take the objective function as

h(^ ^ ^ Pn P± Pil\\mi ' m, ' •••' mi ' m„ ' m„' m„)
-H(Pi,Pi, ...,Pn). ...(37)

(/) In the case of Shannon's entropy, the objective function is

« n n

Pi=^Pi\ogmi. ...(38)
'•=1 ' ' i=\ i=i

Let ^„{B) denote the maximum of this objective function (38)
subject to (36), m's, being integers > 1, then the principle of optima-
lity of dynamic programming [Bellman (1957), Bellman and Dreyfus
(1961)] gives

max

W^)= {Pn log («=2, 3,...) ...(39)

4'i{B)=pi log Ml ...(40)

where is the integer for which 5-/i(Mi) is minimum and is
the integer for which

B-fn{M„)-m)-f,{\), -/„.-i(l)
;s the smallest.
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(ii) In the case of Renyi's entropy or order a, the objective
function is

n

S Pi"
/=!

" (P'Y
1J_ log i-J— — log " (41)

1-a n Pi 1-a ® «

i, ""s • ,3f'
rt

so that if 0<a<l, we have to maximize yi'/wJi"-! and if a>l,

we have to minimize the same quantity subject to (36) and w's being
integers ^1.

The principle of optimality gives for the case0<a<l

max r n "

^«(5)= -^T-+/'«-i(5-/„(m„) («=2,3,...)
...(42),

Similar equations are obtained when a>l.

(i(7) In the case of the objective function

-log max(^ ^\+\ogm&\{pi,Pi,...,p,) ...(44)
® \Wj WI2 ninj

We have thus to find Wj, trii /«„ so that the largest of

El. El- .. ^ is minimized so that the recurrence relation is
VM ' VM ' ' HI 'Wi m

min

f^„(5)= max (5-/„(w„))) (n=2, 3, ..)

...(45)

The particular cases of the above when (36) is replaced by

mi+m2+...+m„=M •••(47)

were discussed by us in Kanpur (1968a).
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(iv) For the entropy of order « and type p, the objective function
IS

"t+p—1 n a+p-1

',£i
n (pi \a-

'OS ^ Z \P . -'"8 ^-(48)
S Pi^
i=\

SO that we have to maximize (when 0<a<l)

n

2
i=\

^ ...(49) -n

•S
/=! Wi.P-1

subject to (36) and w's being integers >1. When a>l, wehaveto
minimize the expression (49).

Unlike the earlier case, this is not separable and the technique
of dynamic programming is not applicable.

The problem belongs to the domain of non-linear integer
fractional functional programming.

The first attack is to try to solve this problem without the
requirement ofm's being integers. Even this is not easy and only
some cases of fractional functional programming have been solved.

As is well-known, for a mathematical programming problem,
whether a local maximum or minimum is also a global maximum or
minimum, and the necessary and sufficient conditions for the existence
of a local or global optimum depends very much on the nature of the
objective and constraint-functions. Magasarian (1969) and Postein
(1967) have studied seven types of convexity. Gupta and Bector
(1967) have made a systematic study of the nature of products,
quotients and rational powers of convex-like functions and their
relevant results are given in the following table :

/ CX SX SX CV CV SV SV CX CX SX SX

>0 >0 >0 >0 >0 >0 >0 ^0 ^0 <0 <0

g SV CV SV CX SX CX SX CX SX CX CX

>0 >0 >0 >0 >0 >0 >0 >0 >0 >0 >0
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i- EQX EQX EQX QV EQV EQV EQV QX EQX EQX EQX
s

/ cx' CX SX SX ' cv cv sv cv cv cv sv sv
>0 >0 >0 >0 >0 >0 >0 >0 <0 <0 <0 <0

g cx SX cx SX cv sv cv cv cv sv cv cv
<0 <0 <0 <0 <0 <0 <0 <0 >0, >0 >0 >0

QVEQV EQV EQV QX EQX EQX EQV QV EQV EQVEQV

f CX CV SX CX SX sv cv sv

<0 <0 <0 <0 <0 <0 <0 <0

g cv cx cv sv SV cx SX SX
<0 <0 <6 <0 <0 <0 <0 <0

L
g

QV QX EQV EQV EQV EQV EQV EQV

Here CV, SV, QV, EQV, SDV are abbreviations for concave,
strictly concave, quasi-concave, explicitly quasi-concave and pseudo
concave functions respectively. In the same way CX, SX, QX, EQX
and SDX stand for convex, strictly convex, quasi-convex, explicitly
quasi-convex and pseudo convex functions respectively. The results
are simplified when the functions are differentiable.

4. Generalized Entropies and Statistical Mechanics

To make connection with statistical mechanics, we ask ourselves
the question : "In what quantum state is the system ?" Let pi be the
probability for the system being in the /th state. The probability
distribution must, of course, be consistent with the observed know
ledge. According to the information-theoretic point of view, we
choose a set of probabilities which maximize the entropy, consistent
with observed knowledge, since this is the most non-committal view.
According to Gibbs the state of equilibrium is the state of maximum
entropy. From the information theoretic point of view, it is
the state in which all the random motions which can take place
are taking place so that the observer knows as little about the system
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as it is possible for him to know beyond the knowledge of the
constants of motion.

From quantum mechanics, we know that the system can be in
state i with energy e; (/=1, 2, ..., n). If we make an observation of
s, the best we can do so is to infer that it represents the expected

energy e, since this is the repeatable quantity associated with the
motion. To find the appropriate distribution, we maximize
fTQji, /'n) subject to

X'pi=l -(50)
i=l

S Pi^i=l •••(51)
i=l

Equation (50) states that the system is always in one of the states

and equation (51) states that e is the expected energy.

Using Shannon's measure of uncertainty, we seek to maximize

-S Pi log Pi ..,(52)
/=l

subject to (50) and (51).

Using Lagrange's method of undetermined multipliers, we get
the probability distribution

p^=e (/=1, 2,...,n) ...(53)

where ij; and Bo are determined from the equations

S e-^oH=e'̂ S = s ...(54)
1=1 =.1

It can be shown that Bo is equal to IjkT where k is the Boltz-
man constant and T is the temperature of the system. (53) gives then
the classical Boltzman distribution. However, in statistical mechanics,
WP come across the distributions

Pi= +1 (Fermi-Dirac) ...(55)
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and

e —L

ofwhich (54) is a Hmiting form when particle density is low and
the temperature is high.

We now attempt to answer the following questions.

(0 How should the expression (52) for entropy be modified so that
its maximization may lead to (55) or (56) instead of to (53) ?

(ii) Do these modified forms satisfy the postulates laid down by
Shannon for (52) ? In particular which postulates have to be
modified ?

{Hi) How are these modified forms related to the generalized entro
pies of order « and type p ?

To answer these questions we replace (52) by

S fiPi) (57)
/=1

where the choice of function / is at our disposal. Maximizing,
it subject to (54), we get

/' (58)

If (55) is to be a solution, we get

or

/(j) 1=.—j log>'-(l—j) log j;+c. (59)

The constant c depends on the choice of the base of the
logarithm so that

logi^i - S (1-a) log (i-;?f) ...(60)
1=1 «=l

for the Fermi-Dirac case.

Similarly for the Bose-Einstein case, we get

S (!+/'.•) log (l+A-)- 2 Pi log Pi. ... (61)
/=1' j=l

p. —j L_ (Bose-Einstein) (56)
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Let us now consider the properties of (60) and (61).

(/) Each is a continuous symmetric function of the arguments
(taking pi log/7,=0 when pi=0).

(«)Eachis maximum when ;7i=;72 = ...=;7„=—

[see Section 4].

- iiii) For each S{p„ p„, o)^S{p^, p^, p„).

(/!') In thecase of certainty, i.e, when one of the states is bound
to occur and the rest are bound not to occur (60) gives
zero and (61) gives 2 log 2, so we can make this also zero
by defining

« It

^=^0+Pi) log (i+pt)~^^p^ log p. _2 log 2. ...(62)
(v) For two independent schemes, (60) gives

S{AB)-S{A)-S{B)

_ '« « m n
"75 i/' .fj .l^^-PiPd log {\~Pi q,)

" "« «
log log (l-Pi) log (l-pj)

m

+3i(1-9#) log (l-qi)

m n ^

"""^1 log (1-A 9y) +2 (1-;,,) log (1-^.)
i=l

log (l-q,). (63)

In the special case

I"" "J {m m my ...(64)
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we get

log [l-

+"('- i) '°8 ('- t)
+m(l- -^)log (l- -i)

+(n-l)log(l-
+(w-l)log

log 1 \Hm—1

7

m-l

...(65)

so that weconclude that for two independent schemes S(AB) is not
necessarily equal to 5(.4)+5(5). The same result is also easily seen
to be true for Bose-Einstein entropy.

Thus we find that Fermi-Dirac and Bose-Einstein entropies do
not satisfy postulates (vii) and (v/ii) of section 1.

However ourgeneralized entropy of order a and type p and
Renyi's entropy of order a satisfy (vii) and so it is observed that these
cannot lead to (60) or (61).

The earlier generalizations referred to generalizations of postu
late (v/»)- We need to modify postulate (vii) also.

For Renyi's entropy, it is easily seen that the probability
distribution is given by

1

.a—1
Pf^(A+B s,)

when A and 5 are determined from

1 1

S (A+Bet)''̂ ^ =1, t^i(A+B Sff ^=1.'
1=1 i=l

...(66)

...,(67)
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5. Bose-Einstein and Fermi-Dirac Entropies

(0 Wefirst prove by using the principle ofoptimality that Bose-
Einstein entropy is maximum when all the probabilities are equal. Let

n n

5"= 2 ic+pi) log (c+pi) - S. Pi log Pi ...(68)
«=i /=!

andlet it be desired to maximize this subject to "

n

S Pi=c, Pi > 0.
1= 1

...(69)

Let fn[c) be the desired maximum value, then the principle of
optimality gives

m=
max

{(c+Z'n) log {c+p„)-p„ log/?„+/„.i(c—;?„)} (70)

/i(c)=2c log c—c log c. .. (71)

Suppose the result is true for the case of (n-1) outcomes, then (70)
gives

flic) — (fi+Pn)—Pn lOg /?»+(crt-;j„) log
max

then

max

0<P„<c
iHPn)}, [say]

(;'«)=Iog^^— +Iog
Pn """ —cn-p„

c(n-l)
f'(p„)=-

P«(c+Pn) {c-pn){cn-p„)

4>{pi) is therefore maximum when

c

Pn= — •

<0.

...(72)

...(73)

...(74)

...(75)

Using the principle of induction and putting c=l, we get the result.

(/i) We next prove, again by using the ,principle of optimality,
that Fermi-Dirac entropy is maximized when all the probabilities are
equal.
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We consider the maximization of

63

S=- X Pi log Pi- 2 (c-pi)Aog(c—Pi) ...(76)
/=1 /=1

subject to (69)

The principle of optimality gives
max

{-i'K log A,-(c-;>„) log (c-/?„)+/„_J (c-Pn)}
0<Pn<C

...(77)

fl{c)=-C log c

If the result is true for the case of (/z —1) outcomes

max

...(78)

m=
0<Pn<C

-Pn log Pn-ic~Pn) log (C—;7„)-(c-j9„)

Then

log '-~-^cn-2c^p,) log^

max

Q<Pn<c
{<l'(Pn)} (say).

C-Pn

p,l
'l''(Pn)=\og -log c-p„

cn—2c+pfi

cn—c

• ...(78)

...(79)

<t>{Pn) is therefore maximum when

, ...(81)
n

Again using mathematical induction and putting c=l, weget
the result.

iiii) Alternative proofs of the above two results are easily obtained
by using the convexity of the functions

Xlog x-(l+x) log(l+x)and xlog ;c-i^(l-x) log (1-x) ,..(82)
in the interval 0<x<l and the inequahty

n n

£*•"> -(83)
(=1 1=1

which holds for any continuous convex function.

{iv) We now show that both Bose-Einstein and Fermi-Dirac
entropies are increased by subdivision of events.
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For the Bose-Einstein case, we have to show that

2

i,e.

1=1 1=1

= 2 (1+y^r) log (1+a)+ %Pi\ogPi
!=1

>0

^ {{Pi+m^ log^l+ ^-(1+a) log (l+p<)+p« log
...(84)i=l

Let

f{n)=-{p+x) log ^1+ j-(l+p) log (1+;^)+/' log X...(85)
then

f\x)= log(l+ ...(86)

Since/(1)=0 and /'(:<:) >0 for a: >1, it follows that /(x)>0
for:x:>l. It follows that (84) is always satisfied when m's are
integers >1.

Similarly for the Fermi-Dirac case, we have to show that

n

2 •-{mi-Pi)\Qg (l-|̂ ^+(1-Pi) log (l-pO+ '̂ilogWi
/=1

Let

>0

...(87)

Kx)=-{x-p) log ^1- ^j+(I-/') log (l-rt -f plogx .. (88)
then

;c
94'(^)=log

x-p
...(89)

Since ^(l)=0, <f>'{x)>0 for x>l, it follows that 0(x)>O for
x'^l. It follows then that (87) is always satisfied when m's are
integers >1.
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(v) fVe now use dynamic programming to optimize the gain in
Bose-Einstein and Fermi-Dirac entropies subject to the budget cons
traint {36).

The recurrence relations for the Bose-Einstein case are given by

(-B-/„(m„))}(«=2, 3,...) ...(90)

't>i{B)={Pi+M^) log r 1+^ log •..(91)
\ )

The same relations for the Fermi-Dirac case are given by
, max / \

+ <^«-i(5-/„(m„))} .. (92)

h{B)=Pi log M^-{Mj_-p,) log 1 ...(93)

Since the objective functions are separable, the method of
dynamic programming is applicable.

6. Summary

The problem ofallocating resources for carrying out experiments
to maximize the gain in information when the budget is fixed is solved
when Shannon's and Renyi's entropies are used.

For our entropy of order a and type p, this problem leads to a
problem in non-linear integer fractional functional programming.

Shannon's entropy leads to Boltzman distribution of statistical
mechanics. Bose-Einstein and Fermi-Dirac entropies which lead to
the corresponding distributions of statistical mechanics have been
obtained and some of their properties have been studied.
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